4(3r^2-50r-28)=0

Simple and best practice solution for 4(3r^2-50r-28)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3r^2-50r-28)=0 equation:


Simplifying
4(3r2 + -50r + -28) = 0

Reorder the terms:
4(-28 + -50r + 3r2) = 0
(-28 * 4 + -50r * 4 + 3r2 * 4) = 0
(-112 + -200r + 12r2) = 0

Solving
-112 + -200r + 12r2 = 0

Solving for variable 'r'.

Factor out the Greatest Common Factor (GCF), '4'.
4(-28 + -50r + 3r2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-28 + -50r + 3r2)' equal to zero and attempt to solve: Simplifying -28 + -50r + 3r2 = 0 Solving -28 + -50r + 3r2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -9.333333333 + -16.66666667r + r2 = 0 Move the constant term to the right: Add '9.333333333' to each side of the equation. -9.333333333 + -16.66666667r + 9.333333333 + r2 = 0 + 9.333333333 Reorder the terms: -9.333333333 + 9.333333333 + -16.66666667r + r2 = 0 + 9.333333333 Combine like terms: -9.333333333 + 9.333333333 = 0.000000000 0.000000000 + -16.66666667r + r2 = 0 + 9.333333333 -16.66666667r + r2 = 0 + 9.333333333 Combine like terms: 0 + 9.333333333 = 9.333333333 -16.66666667r + r2 = 9.333333333 The r term is -16.66666667r. Take half its coefficient (-8.333333335). Square it (69.44444447) and add it to both sides. Add '69.44444447' to each side of the equation. -16.66666667r + 69.44444447 + r2 = 9.333333333 + 69.44444447 Reorder the terms: 69.44444447 + -16.66666667r + r2 = 9.333333333 + 69.44444447 Combine like terms: 9.333333333 + 69.44444447 = 78.777777803 69.44444447 + -16.66666667r + r2 = 78.777777803 Factor a perfect square on the left side: (r + -8.333333335)(r + -8.333333335) = 78.777777803 Calculate the square root of the right side: 8.875684639 Break this problem into two subproblems by setting (r + -8.333333335) equal to 8.875684639 and -8.875684639.

Subproblem 1

r + -8.333333335 = 8.875684639 Simplifying r + -8.333333335 = 8.875684639 Reorder the terms: -8.333333335 + r = 8.875684639 Solving -8.333333335 + r = 8.875684639 Solving for variable 'r'. Move all terms containing r to the left, all other terms to the right. Add '8.333333335' to each side of the equation. -8.333333335 + 8.333333335 + r = 8.875684639 + 8.333333335 Combine like terms: -8.333333335 + 8.333333335 = 0.000000000 0.000000000 + r = 8.875684639 + 8.333333335 r = 8.875684639 + 8.333333335 Combine like terms: 8.875684639 + 8.333333335 = 17.209017974 r = 17.209017974 Simplifying r = 17.209017974

Subproblem 2

r + -8.333333335 = -8.875684639 Simplifying r + -8.333333335 = -8.875684639 Reorder the terms: -8.333333335 + r = -8.875684639 Solving -8.333333335 + r = -8.875684639 Solving for variable 'r'. Move all terms containing r to the left, all other terms to the right. Add '8.333333335' to each side of the equation. -8.333333335 + 8.333333335 + r = -8.875684639 + 8.333333335 Combine like terms: -8.333333335 + 8.333333335 = 0.000000000 0.000000000 + r = -8.875684639 + 8.333333335 r = -8.875684639 + 8.333333335 Combine like terms: -8.875684639 + 8.333333335 = -0.542351304 r = -0.542351304 Simplifying r = -0.542351304

Solution

The solution to the problem is based on the solutions from the subproblems. r = {17.209017974, -0.542351304}

Solution

r = {17.209017974, -0.542351304}

See similar equations:

| 25s^2=49 | | 38=2l+16 | | -9p+5=3+8p | | 7x-9y=-48 | | 2x=1.6 | | 42+3x=12-3x | | 1.2(a+0.065)=25 | | -4x^2+16x+48= | | log(2-x)=0.5 | | 7x-9=5x+29 | | 16x^2+8x= | | 2v^2=-7v-6 | | 2k-3=2-3k | | 2x^3-4x^2-15x=0 | | 6x^2-22x+12=0 | | 4x^3-10x^2+6x-15= | | 5(x^2-9)=0 | | -2x+y=6 | | p^2+12=12 | | m^2=88 | | (7w+6)(4w-11)= | | 1.9(2.6)x=10 | | y=2(0.75)x | | -4(7x-4)=72 | | 17-33=x | | -3x^2=27 | | 6=s+14 | | 2x^2-x-31=31 | | 2x-(x-3)=2x+10 | | 2x-67=83-4x | | -x+5y=-30 | | 10+2(2n+1)=7n-3 |

Equations solver categories